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Abstract: Geometric constraints in rings are examined from several points of view. It is shown that a six-mem-
bered ring with given bond distances and bond angles is rigid unless it possesses a nonintersecting twofold axis of 
symmetry, in which case it is flexible. Thus the chair forms of all six-membered rings are rigid once bond distances 
and angles are specified. The eight-membered ring with fixed bond distances, bond angles, and with two torsion 
angles fixed at zero {e.g., cyclooctadiene) also exists in rigid or flexible forms, depending on the absence or presence 
of a nonintersecting twofold axis of symmetry. Molecules such as cycloocta-l,4-diene, for which such symmetry 
can only be approximately fulfilled, may also appear to be flexible. Some relevant experimental findings are sum­
marized. 

The best known example of the effects of geometric 
ring constraints on the properties of certain models 

of cyclic molecules is the contrast between the rigidity 
of the chair form and the flexibility of the boat-twist 
forms of cyclohexane, as first described by Sachse.2a 

Several more recent discussions of the properties of 
the equilateral, isogonal spatial hexagon are avail­
able,2b'3'4 b u t for other cyclic systems the influence 
of ring constraints on molecular structure and flexibility 
does not seem to have attracted much attention. This 
lack of interest may be ascribed partly to the mathe­
matical difficulties associated with a formal treatment 
of all but the simplest cases (although many interesting 
results can be derived simply if nonrigorously by ex­
amining the mechanical properties of Dreiding models6) 
and partly to awareness of the inherent shortcomings 
of a purely geometric approach to problems of molec­
ular structure. On the other hand, the geometric 
aspects of molecular structure cannot be ignored. It 
is obviously very convenient to describe molecular 
structures in terms of geometric parameters such as 
bond lengths, bond angles, torsion angles, etc., and 
it is therefore important to know the kind of restric­
tions that may hold between such parameters in cyclic 
and polycyclic molecules. For example, nonplanar 
conformations of cyclopentane cannot have all C-C 
bond lengths and all C-C-C bond angles equal since 
the equilateral, isogonal pentagon is constrained to 
be planar.6 In this respect the pentagon is unique 
since no other equilateral, isogonal polygon (apart 
from the trivial cases of point, line, and triangle) is 
constrained to lie in a plane. Neglect or ignorance of 
this geometrical result can lead to a profitless enquiry 
into the origin of observed bond angle differences in 
nonplanar five-ring molecules, and possibly even to 
an incorrect "explanation." In this paper we examine 

(1) (a) Eidgenossische Technische Hochschule; (b) California In­
stitute of Technology; (c) Contribution No. 4418. 

(2) H. Sachse, Ber., 23, 1363 (1890); Z. Phys. Chem., 10, 203 (1895); 
(b) P. Hazebroek and L. J. Oosterhoff, Discuss. Faraday Soc, 10, 87 
(1951). 

(3) J. D. Dunitz, J. Chem. Educ, 47, 488 (1970). 
(4) H. L. Strauss, ibid., 48, 221 (1971). 
(5) We single out Dreiding models not only because they are familiar 

but also because of the precision with which the units are constructed. 
(6) J. Waser and V. Schomaker, / . Amer. Chem. Soc, 67, 2014 

(1945); J. D. Dunitz and J. Waser, EUm. Math.,11, 25 (1972). 

the influence of geometric constraints in certain six-
and eight-membered rings. 

For a chain of n atoms the n — 1 bond distances, 
n — 2 bond angles, and n — 3 torsion angles can be 
assigned arbitrary values since there are 3n — 6 of 
them, exactly the number of degrees of freedom of 
the system. For a ring of n atoms, the n bond dis­
tances, n bond angles, and n torsion angles are not 
independent, however, since they must be related by 
six equations of constraint (ring closure conditions). 
In polycyclic systems of n atoms there are even more 
equations of constraint since each additional ring in­
volves one additional bond distance, four additional 
bond angles, and eight additional torsion angles, 
whereas the number of degrees of freedom remains 
3n — 6. In small polycyclic systems, e.g., bicyclo-
[l.l.l]pentane, the constraints are especially severe 
and can lead to highly unusual molecular parameters. 

Our problem can be defined in terms of the number 
of torsional degrees of freedom possessed by an n-
membered ring in which the n bond distances and n 
bond angles are regarded as fixed (a ring built from 
idealized Dreiding models). If there are no torsional 
degrees of freedom then the ring is rigid (it can be de­
formed only if bond distances or bond angles are 
changed, contrary to the conditions stated) whereas 
the presence of at least one torsional degree of free­
dom confers flexibility on the ring. We assume in 
our discussion that the sum of the n fixed bond angles 
is less than (n — 2)7r; n > 3. 

Rigid and Flexible Six-Membered Rings. As is well 
known, the equilateral, equiangular six-membered ring 
(e.g., cyclohexane) can exist in a rigid, highly symmetrical 
chair form (point group Du) in which the torsion angle co 
is related to the bond angle 8 by cos co = —cos 0/(1 
+ cos B), or in a family of flexible forms, which can 
be changed continuously into each other by changing 
the torsion angles, and which include the boat form 
(point group C2„) and the symmetrical twist form (point 
group D2) as special cases. The only symmetry ele­
ment common to all the flexible forms of the equilateral, 
equiangular six-membered ring is a twofold rotation 
axis that does not pass through any atoms or bonds. 
We shall refer to such an axis as a nonintersecting axis. 
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Figure 1. Out-of-plane normal vibrations of a regular hexagon. 

(o) (b) (C) 

Figure 2. The six-membered ring with bond distances du d%, and 
di and angles S1, 02, and B3 as shown on left (a) must have either a 
nonintersecting twofold axis &(z) (b) or a center of symmetry (c). 
The former needs seven Cartesian coordinates, the latter only 6. 

At first sight the existence of the extra degree of free­
dom in the flexible forms may seem mysterious since 
the fixing of six bond distances and six bond angles 
may appear to exhaust the 3 X 6 — 6 = 12 degrees of 
freedom at our disposal. Some insight is achieved 
by considering the symmetry properties of the three 
out-of-plane normal vibrations of a regular hexagon 
(Figure I).7 

In terms of the irreducible representations of the 
point group DM, v2 belongs to B2g; via. and vih belong 
to the degenerate representation Es11. Since v\& and v^, 
are degenerate, any normalized linear combination 

via cos a + vib sin a 

is also a normal vibration. Values of a = 0, 60, 120°, 
etc., are seen to correspond to the forms with D2 sym­
metry, a = 30, 90, 150°, etc., to the forms with C2, 
symmetry, and intermediate a values to forms with 
only C2 symmetry. The extra degree of torsional free­
dom is then nothing else but the phase angle a. The 
nondegenerate vibration v2, corresponding to the chair 
form, is not associated with any such phase angle. 
The most serious limitation of this approach is that it 
applies only to the equilateral, equiangular ring. What 
about six-membered rings in which the fixed bond 
distances or bond angles are not all equal? 

A Special Case. A simple way of treating certain 
problems of this kind has been outlined in a previous 
paper.3 Consider a six-membered ring in which oppo­
site distances and angles are equal, so that the three 
different bond distances di, d2, and d3 and three differ­
ent bond angles A1, Q2, and Q3 are arranged as indicated 
in Figure 2a. For any three-bond train such as A-
B-C-D the torsion angle about the central bond B-C 
is related to the distance between the ends of the train 
by (Figure 3) 

(AD) 2 = dS + d2* + dS - Id^d2 cos 02 -

2d2d3 cos B3 + 2c?ifi?3(cos 62 cos B3 — 

sin O2 sin B3 cos «2) 

(7) H. M. Pickett and H. L. Strauss8 have used these normal vibra­
tions to develop a system for describing all significant nonplanar con­
formations of cyclohexane in terms of only two coordinates. 

(8) H. M. Pickett and H. L. Strauss, / . Amer. Chem. Soc, 92, 7281 
(1970). 

X 

d 2 -d 3 cos B2, d , sin B2 cos iu, 
^Cd 3 d3 sin S2 sin a 

- " " -^Ld 2 1 O 1 O 
B1 

d 2 CJiu 

"a, cos B1, d, sin S1, 0 

Figure 3. Coordinates of a train of four atoms A-B-C-D. 

We see that cos coBc = cos «EP, so that «BC = ± «EF, 
and similarly WCD = ±COFA and WAB = ± « D E . Of 
the eight possible combinations, only two are geo­
metrically feasible. One (with the signs of related 
w's equal) corresponds to a ring with a nonintersecting 
twofold axis (Figure 2b), the other (with opposite signs 
for related co's) to a ring with a center of inversion (Fig­
ure 2c). In the former case, seven Cartesian coor­
dinates are necessary to define the positions of the 
three symmetry-independent atoms (e.g., xA, 0, 0; XB, 
J>B, ZB ; Xc, >'c, Zc, placing the x-axis through atom A) 
so that with six internal parameters, du d2, d3, 6U Q2, Q3 

fixed there remains one internal parameter that can 
be arbitrarily assigned within certain ranges. The 
solution with the nonintersecting twofold axis thus 
corresponds to a flexible ring. For the centrosym-
metric ring, only six Cartesian coordinates are neces­
sary to define the positions of three symmetry-inde­
pendent atoms (e.g., xA, 0, zA; xB, ^ B , 0; xc, yc, 0) since 
the plane defined by the inversion center and two atoms, 
B and C say, also passes through the two symmetry 
related atoms (in other words, B, C, E, F are coplanar 
with the center). This common plane can be chosen 
as x,j-plane and the x,z-plane passed through A. 
Hence there can be no free parameter in addition to 
the fixed bond distances and bond angles and the solu­
tion with the centrosymmetric ring corresponds to a 
rigid ring. The point groups C2 and C1 are both of 
order 2, so that flexible forms do not necessarily have 
a lower symmetry than rigid forms.9 

We may ask whether other possible symmetries of a 
six-membered ring with given bond distances and bond 
angles might convey flexibility upon the ring and con­
sider therefore any of the following four possibilities: 
a twofold axis through a pair of opposite atoms or 
bonds, or a plane of symmetry through a pair of atoms 
or bonds. We see that when either of these symmetry 
elements passes through a pair of atoms, the bond 
angles associated with these atoms are not related to 
others; when either symmetry element passes through 
a pair of bonds, these bonds are not related to others. 
In both cases there is then a total of seven unrelated 
bond angles and distances (4 + 3 or 3 + 4), compared 
with seven free coordinates, so that no free internal 
variable remains. Thus the only symmetry element 
that conveys flexibility is a nonintersecting twofold 
axis. 

(9) In a recent article, Strauss* has misunderstood earlier arguments3 

presented by one of us. He wrote that "Dunitz pointed out that the 
boat-twist form of cyclohexane is less rigid than the chair form because 
of its lower symmetry." Dunitz actually pointed out that an equilateral, 
equiangular six-membered ring is either rigid or it has a nonintersecting 
twofold axis. He then showed that all six-membered rings with the 
latter property and with fixed bond distances and angles are flexible. 
But a ring, e.g., with six different fixed distances and six fixed angles, 
has no symmetry and is rigid. 
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Figure 4. Convex (left) and nonconvex (right) octahedra. All 
edges of the triangular faces are 1,2 or 1,3 distances of nonplanar 
six-membered rings. 

It must be emphasized here and elsewhere in this 
paper that we are speaking of rigidity and flexibility 
in a mathematical rather than a mechanical sense. By 
rigidity we imply merely the presence of some func­
tional relationship between torsion angles ut and the 
other internal parameters p} that are held constant; 
that is, there exist nonzero derivatives bpj/but. By 
flexibility we.imply that all such derivatives are zero 
in a nonvanishing range of the co*. A mechanical 
model of a six-membered ring with bond distances and 
angles such that the condition of a nonintersecting 
twofold axis is approximately but not exactly fulfilled 
will appear to be more or less flexible, depending on 
the degree of approximation and the mechanical rigid­
ity of the individual links. The derivatives 2>/̂ /dw< 
are close enough to zero in a nonvanishing range of 
the Wi to make the mechanical model appear flexible. 

Six-Membered Rings and Octahedra. So far we 
have been looking at the six-membered ring as a spatial 
polygon, but the rigidity problem can also be expressed 
in terms of the properties of polyhedra. Instead of 
describing the ring in terms of its bond distances and 
bond angles we can replace the latter by distances be­
tween next-nearest neighbors. For a six-membered 
ring the resulting arrangement of triangles framed by 
the 1,2 and 1,3 distances is that of an octahedron. If 
the ring is in the chair form the octahedron is convex 
(Figure 4). A theorem due to Cauchy10 states that if 
all external faces of a convex polyhedron are rigid 
then the polyhedron itself is rigid. The octahedron 
in question must therefore be rigid since all eight ex­
ternal faces are triangles, which are completely defined 
by the given 1,2 and 1,3 distances. Thus chair forms 
of all six-membered rings, regardless of the presence 
or absence of symmetry, are rigid, once the bond dis­
tances and angles are specified. 

For any nonchair nonplanar form of a six-membered 
ring, the octahedron under discussion is not convex 
(it does not entirely contain all segments connecting 
any two points on its boundary (Figure 4)). Cauchy's 
theorem does not apply to nonconvex octahedra, but 
they have been analyzed in detail by Bricard11 (who 
appears to have been unaware of Sachse's closely re­
lated discussion2a of the cyclohexane ring a few years 
earlier). 

It is impossible to describe Bricard's algebraic 
treatment in a short space, but his main conclusions 
can be summarized as follows. The nonconvex octa­
hedron with fixed faces is rigid in general, but there 
are three special types that are flexible: 

(I) Those with a nonintersecting twofold axis, 
shown in Figure 5. The 12 edges of this figure can be 
identified with the six 1,2 distances and six 1,3 distances 

(10) See A. D. Alexandrow, "Konvexe Polyeder," Akademie-Verlag, 
Berlin, 1958, pp 112-113; L. A. Lynsternik, "Convex Figures and Poly­
hedra," Dover, New York, N. Y., 1963, pp 60-66. 

(II) R. Bricard,/. Math. Pures Appl, (5) 3, 113(1897); seealsoG.T. 
Bennett, Proc. London Math. Soc, (2) 10, 309 (1911). 

Figure 5. The twofold axis of the nonconvex octahedron 
ABCA'B'C is perpendicular to the paper. The four ways of 
choosing a hexagon from the 12 edges of the octahedron are 
shown. In any specific case, only one of these hexagons corre­
sponds to a reasonable molecule. 

Figure 6. Bricard's nonconvex octahedron with a plane of sym­
metry through two opposite vertices C and D. (The eight triangular 
faces are ABC, A'B'C, ABD, A'B'D, AB'C, A'BC, AB'D, and 
A'BD.) If six edges are identified with 1,2 distances of a hexagon, 
then four edges correspond to 1,3 distances and the remaining two 
edges to 1,4 distances. 

of a six-membered ring in four distinct ways. The 
six-membered rings so described also possess non-
intersecting twofold axes and must be flexible, a result 
we have already derived by counting degrees of freedom. 

(2) Those with a plane of symmetry passing through 
two opposite vertices (Figure 6). In this case the 
corresponding six-membered ring (which can also be 
chosen in four ways) also has a plane of symmetry 
passing through two opposite vertices but it is defined 
in terms of three pairs of 1,2 distances, two pairs of 
1,3 distances (bond angles), and one pair of 1,4 dis­
tances (ring diagonals) rather than in terms of bond 
distances and bond angles alone. The flexibility of 
this ring can also be derived in a simple manner by 
counting degrees of freedom since the number of fixed 
internal parameters just alluded to is six, whereas the 
mirror-symmetric six-membered ring requires seven 
Cartesian coordinates for complete specification. Note, 
as mentioned earlier, that the mirror-symmetric ring 
with the three symmetry-independent bond distances 
and the four symmetry-independent bond angles fixed is 
rigid. 

(3) A third type with a special relationship among 
the four angles at each vertex, opposite angles hav­
ing to be either equal or supplementary. There are 
certain difficulties in constructing a model of this type 
of octahedron and its flexibility is not so intuitively 
clear as that of the other types. We shall not discuss 
it further since it is not obviously related to the problem 
of the six-membered ring. 

Although the nonconvex octahedra we have been 
describing do not have a volume in the usual sense, 
nevertheless they can be assigned a definite volume in 
the generalized sense of Mobius.12 This is possible 
since a sense of circuit can be associated with each of 
their faces without violating the Mobius law of edges,12 

that in completing this procedure for all faces of a 
polyhedron each edge is traversed in opposite directions 
with respect to the two faces meeting at that edge. 

(12) See F. Klein, "Elementary Mathematics from an Advanced 
Standpoint," Vol. 2, Geometry, Dover, New York, N. Y., 1939, pp 
16ff. 
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Figure 7. Joining the ends of the ribbon of triangles to give a seven-
membered ring produces a Mobius strip. The drawing illustrates 
the case of equal distances and angles. 

Figure 8. Two forms of eight-membered rings with two opposite 
torsion angles fixed at zero. 

The generalized volume of the polyhedron is defined as 
the algebraic sum of the volumes of the pyramids 
formed by the faces and some arbitrary point P, where 
these volumes are taken positive or negative depending 
on whether the sense of circuit as seen from P is counter­
clockwise or clockwise. Because of the law of edges 
the location of P can be seen to be immaterial. When 
the law of edges is not satisfied it is impossible to 
assign a definite volume to the polyhedron. For a 
convex octahedron the generalized volume just defined 
is identical with the conventional volume. 

It can be shown that for any flexible octahedron the 
generalized volume is zero. For the types 1 and 2 the 
proof is simple. We illustrate it for type 1. In 
Figure 5 suppose the arbitrary point P to be on the two­
fold axis of the nonconvex octahedron ABCA'B 'C . 
The tetrahedra PABC and PA 'B ' C are congruent in 
the strict sense because they are related by the twofold 
rotation axis. The senses of circuit of the triangles 
ABC and A ' B ' C as seen from P are therefore the 
same. The triangles ABC and A ' C ' B ' have then 
opposite senses of circuit and, because of the con­
gruence of the two tetrahedra, their contributions to the 
volume of the octahedron exactly cancel. Similarly, 
the contributions of the triangles CA'B', B'C'A, and 
ACB' exactly cancel the contributions of CBA, BA'C, 
and A ' B C , respectively. When the triangles are 
circuited in the senses indicated, each edge is traversed 
twice in opposite directions. Hence a generalized 
volume can be assigned, and its value is zero. A similar 
proof can be given for the flexible octahedra of type 2. 
For the octahedra of type 3 the proof is somewhat more 
difficult but the result is the same.1S 

We may summarize the discussion so far as follows: 
a six-membered ring with given bond distances and angles 
is rigid unless it possesses a nonintersecting twofold 
symmetry axis, in which case it is flexible provided the 
sum of the bond angles is less than 72O0.13* 

Seven-Membered Rings. A seven-membered ring 
with 7 + 7 = 14 fixed bond distances and angles is 
flexible, since seven atomic positions require 3 X 7 — 

(13) J. Waser, unpublished work. 
(13a) NOTE ADDED IN PROOF. H. A. Lauwerier, Proc. Kon. Ned. Akad. 

Wetensch.,69, 330 (1966), and O. Bottema, ibid., 70, 151 (1967), have 
discussed the mathematical properties of flexible hexagons and have 
come to conclusions that are essentially the same as ours. We thank 
Professor L. J. Oosterhoff for having drawn our attention to these 
papers. 

Figure 9. Left and center structures are rigid and flexible con­
formations of cycloocta-l,4-diene, both with mirror plane through 
two opposite atoms. Right structure is conformation with G, 
symmetry obtained by slight deformation of flexible conformation. 

6 = 15 coordinates, leaving at least one degree of free­
dom. It is interesting that the polyhedron formed by 
linking 1,2 and 1,3 neighbors is bounded by a ribbon of 
the Mobius type and has no assignable volume (Figure 
7). This is true for all odd-membered rings. If one 
torsion angle in a seven-membered ring is fixed in 
addition to the bond distances and angles then the ring 
in general is rigid; the remaining torsion angles are 
then in general functions (but not necessarily single-
valued functions) of the 15 assigned parameters. In 
special cases, however, a seven-membered ring is flexible 
even when one of the torsion angles has been fixed. 

Eight-Membered Rings. An eight-membered ring 
with given bond distances and bond angles has (at 
least) two degrees of torsional freedom, which are in 
general frozen by assigning fixed values to two torsion 
angles. There are again certain special cases where 
such rings are flexible even when the torsion angles are 
fixed. We shall discuss here only cases where two tor­
sion angles are fixed at zero, as realized in the cyclo-
octadienes, for example. The simplest way of visualiz­
ing the geometric constraints in these eight-membered 
rings is to derive them from the known constraints 
present in six-membered rings. 

This is illustrated here for the case where the bonds 
about which the two torsion angles are fixed are 
opposite one another, e.g., as in cycloocta-l,5-diene. 
Figure 8 (left) shows a ring conformation in which 
the two fixed bonds AB and EF are on opposite sides 
of the mean plane of the other four atoms C, D, G, and 
H. The quadrilateral ABCH is planar and defined by 
the given distances HA, AB, and BC and given angles 
A and B so the lines through HA and CB must intersect 
at some point P in the plane ABCH to yield a triangle 
HPC with fixed sides. Similarly, a triangle GQD with 
fixed sides can be obtained from the planar quadrilateral 
GFED. The figure PCDQGH is a hexagon with 
fixed sides and fixed angles. Since it is in the chair 
form it is rigid and hence the original octagon must be 
rigid. 

If the fixed bonds AB and EF are on the same side of 
the mean plane of C, D, G, and H, the above con­
struction yields a hexagon with fixed sides and angles 
in some boat-twist form (Figure 8, right). If the 
original octagon has a nonintersecting twofold axis 
then so does the hexagon, which is therefore flexible, 
in which case the original octagon must also be flexible. 
The rigidity of the chair form and the flexibility of the 
twist-boat family of forms of such an eight-membered 
ring is readily seen by examining Dreiding models of 
cycloocta-l,5-diene. 

Dreiding models of cycloocta-l,4-diene suggest 
that there is a rigid conformation as well as a family of 
flexible conformations of this molecule, which obviously 
does not possess a nonintersecting twofold axis. The 
rigid conformation has a mirror plane passing through 
two opposite atoms. It is illustrated in Figure 9 and 
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its rigidity follows easily from the kind of geometric 
arguments given earlier. As seen from Figure 9 it 
can be developed into the chair form of a hexagon. 
There is also a mirror-symmetric form among the 
flexible conformations of cycloocta-l,4-diene but the 
hexagon into which it can be developed does not possess 
a nonintersecting twofold axis and it should therefore 
be rigid, like the other form. 

Why does one form of the 1,4-diene appear to be 
flexible? The conformation shown in the center of 
Figure 9 is seen from the figure to have approximate 
C2 „ symmetry (its exact symmetry being C3). Indeed 
if some of the bond distances were adjusted upward or 
downward by 5% and the angles by 5° the model 
would have exact C2, symmetry in this conformation, 
with four torsion angles of the eight-membered ring 
equal to zero. In this case the construction shown in 
Figure 9 (right) would yield a hexagon whose flexibility 
would be assured by the presence of the noninter­
secting dyad axis. We have not solved the actual 
equations of constraint for the case of only approximate 
C2v symmetry but it is clear that the rate of change of 
any bond angle, for example, with change in one of the 
nonfixed torsion angles must be so small as to be un­
detectable with normal Dreiding models for a con­
siderable range. The range is, however, definitely 
limited, which is not the case for the analogous form 
of the 1,5-diene. This example illustrates the dis­
tinction between rigidity of a geometric figure and 
rigidity of a mechanical model. 

A conflict between a geometric conclusion and the 
result of experience gained from handling molecular 
models does not necessarily involve a contradiction. 
In the case of six-membered ring, for example, the 
geometric condition for flexibility is the presence of a 
nonintersecting twofold axis, whereas a Dreiding 
model of a six-membered ring that lacks this symmetry 
may appear to be fairly flexible in its boat form. For 
the geometric analysis it is the symmetry of the geo­
metric figure that is relevant, not the symmetry of the 
molecules, whereas for molecules, or models thereof, 
the metric aspect of the required symmetry need be 
satisfied only approximately. When these symmetry 
conditions for molecules or models are satisfied only 
approximately the flexibility extends in general only 
over a limited range, the range being determined by the 
degree of deviation. 

We are not aware of the existence of a general treat­
ment of such "almost poristic" solutions to the equa­
tions of condition. 

Implications for Structural Chemistry. In talking 
about the rigidity or flexibility of molecules it is very 
important to distinguish carefully between the proper­
ties of geometric figures and those of actual molecules. 
The latter involve energy considerations, whereas it is 
an intrinsic limitation of the geometric approach de­
scribed in this paper that energy changes associated with 
conformational changes are totally ignored. Our mo­
lecular model is essentially one in which bond distances 
and bond angles are regarded as invariant while torsion 
angles are free to adopt any values whatsoever unless 
arbitrarily fixed at some definite value. This is ob­
viously unrealistic when we consider the energy incre­
ments associated with deformations of actual molecules 
from their equilibrium conformations by changes in 

bond lengths, bond angles, and torsion angles. One 
set of potential functions14 that reproduces the strain 
enthalpies and equilibrium conformations of cyclo-
alkanes reasonably well is (energies in kcal mol -1 , d in 
A, angles in degree) 

bond length deformation E(d) = 300 (d - 1.533 A)2 

bond angle deformation E(Sf) = 0.025 (6 - 112.70)2 

torsion angle potential £(«) = 1.70 (1 + cos 3«) 

Thus changing a torsion angle by 3-4° from its equi­
librium value of 60 or 180o° costs roughly the same as 
stretching a bond by 0.01 A or deforming a bond angle 
b y l 0 . 

This limitation is so serious that it raises the question 
whether anything at all about the structures and prop­
erties of molecules can be learned from the geometric 
approach. The answer must be a cautious affirmative. 
We can not expect to be able to explain the quantitative 
details of molecular structures by studying geometry 
but we can hope to recognize which features of mo­
lecular structures are "built in" by geometric necessity 
and which require discussion in terms of a detailed 
theory of valency. A trivial example: we shall not 
learn much from a theoretical model designed to 
reproduce the experimental observation that the sum of 
the ring angles in cyclopropane carboxamide is exactly 
180°! 

As far as six-membered rings are concerned the 
results of the geometric analysis seem to have only a 
limited relevance to actual molecules. For cyclo-
hexane itself the twist-boat forms have never been 
observed experimentally; they are estimated to lie at 
least 5 kcal mol - x higher in energy than the chair form, 
mainly as a result of energetically unfavorable torsion 
angles and steric repulsion between nonbonded atoms. 
The same factors are probably responsible for the 
greater stability of the chair form in related six-mem­
bered ring molecules such as dioxanes, etc. The 
normal preference for the chair form can be reduced by 
interactions between substituents. There is evidence 
that ?rarcs-l,3-di-ter/-butylcyclohexane15 and ra-1,4-
di-fer?-butylcyclohexane-2,5-diol16 exist in nonchair 
forms; in the former case the large positive entropy 
change (AS0 = 4.9 ± 1.0 eu) for the cis -* trans 
isomerization has been attributed to the greater flexi­
bility of nonchair over chair forms. Cyclohexa-1,4-
dione17'18 and the corresponding dioxime19 have been 
shown by X-ray analysis to occur in nonchair forms. 
The reasons for this are not clear. The observed rings 
are not boat forms lacking "flagpole" interactions 
between H atoms but are markedly twisted. The 
torsion angles around the ring bonds in the diketone, 
beginning at a bond adjacent to C = O , are 12, —53, 
40, 12, —53, and 40° (calculated from information given 
in ref 14), showing that the ring has effective C2 sym­
metry. The crystal structure analysis17 (carried out at 
— 140°) does not provide any indication of unusually 

(14) M. Bixon and S. Lifson, Tetrahedron, 23, 769 (1967). 
(15) N. L. AIlinger and L. A. Freiburg, / . Amer. Chem. Soc, 82, 

2393(1960). 
(16) R. D. Stolowand M. M. Bonaventura, ibid., 85, 3636 (1963). 
(17) A. Mossel and C. Romers, Acta Crystallogr., 17,1217 (1964). 
(18) P. Groth and O. Hassel, Acta Chem. Scand., 18,923 (1964). 
(19) P. Groth, ibid., 11,128 (1968). 
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large amplitude of internal motion, as has been ob­
served in certain crystal structure analyses of larger 
membered rings.20 An nmr investigation21 of tetra-
methyl-s-tetrathiane strongly suggests that for this 
molecule the twist form of D2 symmetry (the only 
possible form in which the four methyl groups are 
symmetry equivalent) is more stable than the chair 
form. From the temperature dependence of the 
equilibrium it was estimated that the D2 form is <~0.5 
kcal mol-1 lower in enthalpy and ~1.0 eu higher in 
entropy than the Cih chair. When account is made for 
the different symmetry numbers of the two forms the 
higher entropy of the D2 form would suggest that it 
has a greater flexibility. Almost all energy calculations 
based on the most various interatomic potential func­
tions do support the idea that the twist-boat family of 
forms can easily undergo pseudorotational intercon-
version. For cyclohexane, the conformation with D2 
symmetry appears to represent the energy minimum in 
the pseudorotational itinerary, the boat form the 
energy maximum, but the energy barrier is very 
small81422 (less than 1 kcal mol-1 and as low as 40 
cal mol-1 according to one estimate).23 Although the 
agreement with the results obtained from geometric 
analysis should not blind us to the limitations of the 
latter, we may echo a statement (actually made for 
cyclopentane) that "the existence of an equipotential 
path is more due to the geometry of cyclohexane than 
to the exact nature of the intermolecular forces."23 

For eight-membered rings with two opposite torsion 
angles frozen at zero the energy difference between the 
chair and twist-boat forms should depend on very 
different factors from those that favor the chair form 
of cyclohexane. In cycloocta-l,5-diene, both chair 
and boat forms show eclipsing around the -CH2-CH2-
bonds, the torsion angles being 120 and 0°, respectively. 
Any slight preference accruing to the chair form from 
this factor ought to be reinforced by the greater sepa­
ration between the double bonds in this form. Nowa­
days almost everyone knows that the parallel approach 
of two ethylene molecules in their ground states is a 
symmetry-forbidden process.24 The closer the ap­
proach between the two molecules, the greater the 
repulsion energy between them should be.25 On the 
other hand, the boat form, because of its flexibility, can 
ameliorate these unfavorable features by twisting about 
the -CH2-CH2- bonds without any concomitant de­
formation of bond angles, whereas the chair form can 

(20) J. D. Dunitz, Pure Appl. Chem., 25,495 (1971). 
(21) C.H.Bushweller.y.^mer. Chem. Soc, 90,2450(1968). 
(22) J. B. Hendrickson, ibid., 89, 7047 (1967). 
(23) S. Lifson and A. Warshel, / . Chem. Phys., 49, 5116 (1968). 
(24) R. B. Woodward and R. Hoffmann, "The Conservation of Or­

bital Symmetry," Verlag Chemie, Weinheim/Bergstr., Germany, 1970. 
(25) L. Salem, Chem. Brit., 449 (1969). 

only avoid its unfavorable features at the cost of in­
troducing bond angle strain. 

An electron diffraction investigation has shown that 
gaseous cycloocta-l,5-diene exists as an equilibrium 
mixture of chair and boat forms with the latter, pre­
sumably twisted, predominating.26 Roberts found 
that l,6-dichlorocycloocta-l,5-diene has a dipole mo­
ment, 27 which is not possible for the chair form. On the 
other hand, crystal data reported for dibenzocycloocta-
1,5-diene28 indicate a molecular center of symmetry, 
which is only possible for the chair form. X-Ray 
analyses have been reported for several metal com­
plexes of cycloocta-l,5-diene.29-31 In all the cases 
studied, both double bonds are it bonded to the same 
metal atom, which is only possible for the boat-twist 
forms of the diene. From the two analyses for which 
fairly reliable carbon positions have been published, 
it is evident that the complexed cyclooctadiene mole­
cules are markedly twisted out of the ideal boat con­
formation; the torsion angles about the -CH2-CH2-
bonds are 24-29° in one case (cyclooctadieneduro-
quinonenickel(O)30 with two independent sets of mole­
cules with C2 symmetry in the crystal), and 30-36° in 
the other ((cyclooctadiene)2nickel(0)31 with two sets of 
crystallographically independent molecules with ap­
proximate C2 symmetry). 

The balance of evidence suggests that the boat-twist 
forms of cycloocta-l,5-diene are at least as stable as 
the chair form and that they tend to avoid eclipsing by 
adopting a twisted conformation with torsion angles of 
25-35° about the -CH2-CH2- bonds, which would not 
be possible in the chair form without bond angle de­
formation. 

Another molecule containing an eight-membered ring 
in which two opposite torsion angles are effectively 
fixed at zero is cyclo(di-,8-alanyl).32 The electric 
moments of the two peptide groups are oriented much 
more favorably in the centrosymmetric chair form than 
in the boat form with C2 symmetry. But the boat form 
can avoid eclipsing by twisting around the -CH2-CH2-
bonds without concomitant bond angle deformation, 
whereas the chair form is rigid. X-Ray investigation33 

has shown that crystals of cyclo(di-/3-alanyl) are built 
from molecules in a markedly twisted C2 conformation 
(torsion angle of 28° about -CH2-CH2- bonds). 
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